Ryan's Trail Road Redesign

Yufei Cheng McKenzie Moten Parker Schrandt Trevor Snipes

Undergraduate Symposium April 27, 2018 Photo by: McKenzie Moten

Figure 1: Ryan's Trail South-bound

Problem Statement

Our client, Dianne McDonnell, has requested that our team perform a feasibility analysis of potential road alternatives and prepare an asphalt design for future use.

Deliverables

- Feasibility of Alternatives
 - Capital Costs
 - Operations and Maintenance Costs
 - Salvage Costs
- Proposed Design
 - Construction Plan Set
 - Hydrology/Hydraulics Analysis

Photo by: McKenzie Moten

Figure 2: Ryan's Trail North-bound

Project Location

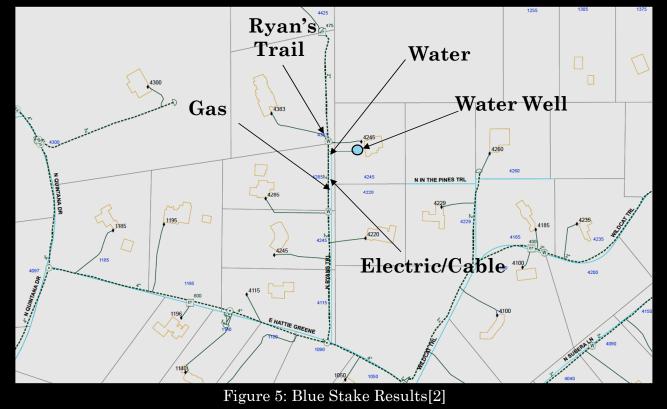


Figure 3: Location of Flagstaff, in Arizona[1]

Figure 4: Location of Ryan's Trail in Flagstaff [1]

Existing Utilities

*Site uses septic sewer system

Existing Conditions

- Current Road Length: 1,420 ft.
- Current Road Area: 21,000 ft.²
- Average Road Width: 12-16 ft.
- Current Materials: Crushed cinder and loam

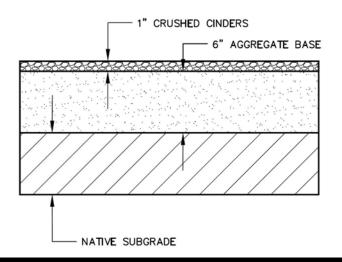
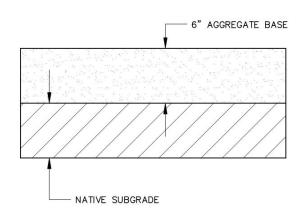


Figure 6: Typical Section Detail of Ryan's Trail Drawing by: Trevor Snipes

Figure 7: Typical Section Detail of Ryan's Trail

Figure 8: Typical Section Detail of Ryan's Trail


Feasibility Analysis

• Brought all costs and values back to present worth using a service life of 20 years to make all alternatives equivalent and comparable.

8

- Used 3% for compound interest factors
- Alternatives chosen based off of:
 - Professional Advice
 - Client Preference
 - Background Research
 - Site Conditions

Alternative 1: Aggregate Base

TYPICAL SECTION: COMPACTED AGGREGATE BASE

Figure 9: Compacted Aggregate Base Drawings by: Trevor Snipes

Table 1: Cost Breakdown for dirt over 20 year span Item **Cost (\$) Capital Costs** \$20,900 **Operation &** \$7,195 Maintenance Costs Salvage Value (-\$730) TOTAL \$27,365 **Positive Impacts Negative Impacts** Non-intrusive • Dust • material Potholes • Rural • appearance

Alternative 2: Gravel

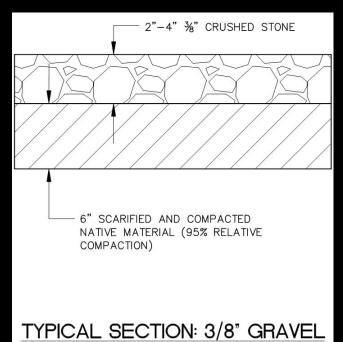


Figure 10: Proposed Crushed Stone Section Drawings by: Trevor Snipes Table 2: Cost Breakdown For Gravel Over 20 Year Span

Item	Cost (\$)
Capital Costs	\$20,350
Operation & Maintenance Costs	\$21,460
Salvage Value	(-\$3,946)
TOTAL	\$37,864
 <u>Positive Impacts</u> Reduces dust Improves appearance 	 <u>Negative Impacts</u> Uneven surface New material every year

Alternative 3: Asphalt

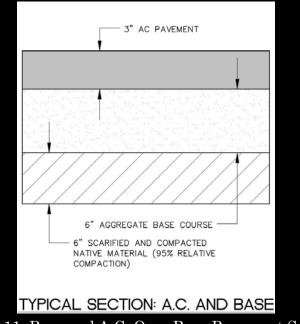


Figure 11: Proposed A.C. Over Base Pavement Section Drawing by: Trevor Snipes Table 3: Cost Breakdown for asphalt over 20 year span

Item	Cost (\$)
Capital Costs	\$108,000
Operation & Maintenance Costs	\$81,982
Salvage Value	(-\$30,452)
TOTAL	\$159,530
 <u>Positive Impacts</u> Snow removal Longer life Increase home value All weather access 	 <u>Negative Impacts</u> Cracking Annual inspections Sealant every 5 years

11

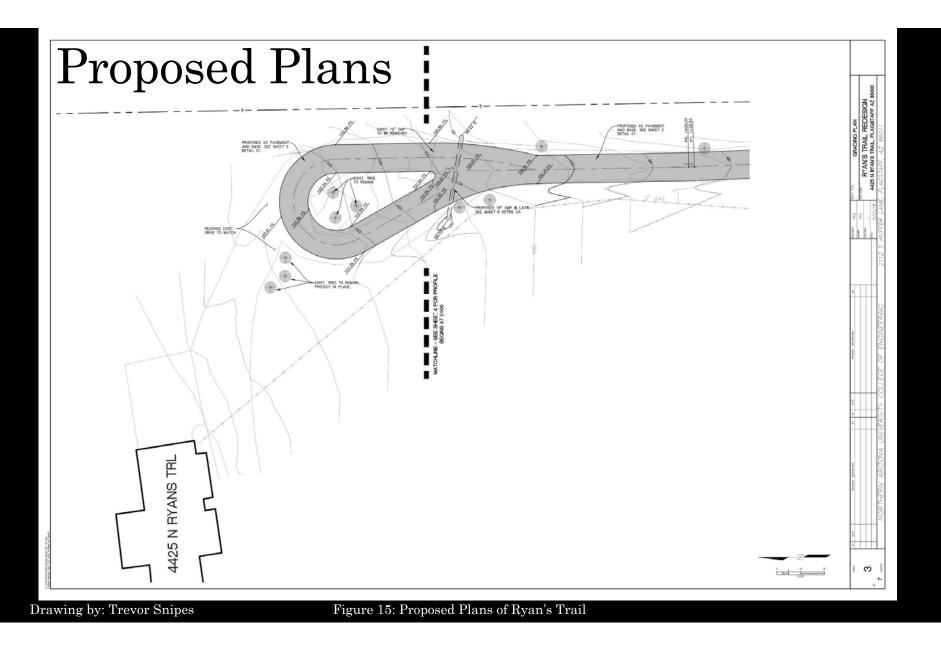
Summary of Costs

Alternatives	Cost
Dirt	\$27,365
Gravel	\$37,864
Asphalt	\$159,530

Table 4: Total Cost of Individual Alternatives Over 20 Year Span

Design Criteria

Design Requirements


- Cost effective
- Maintain durable road structure
- Maintain proper drainage

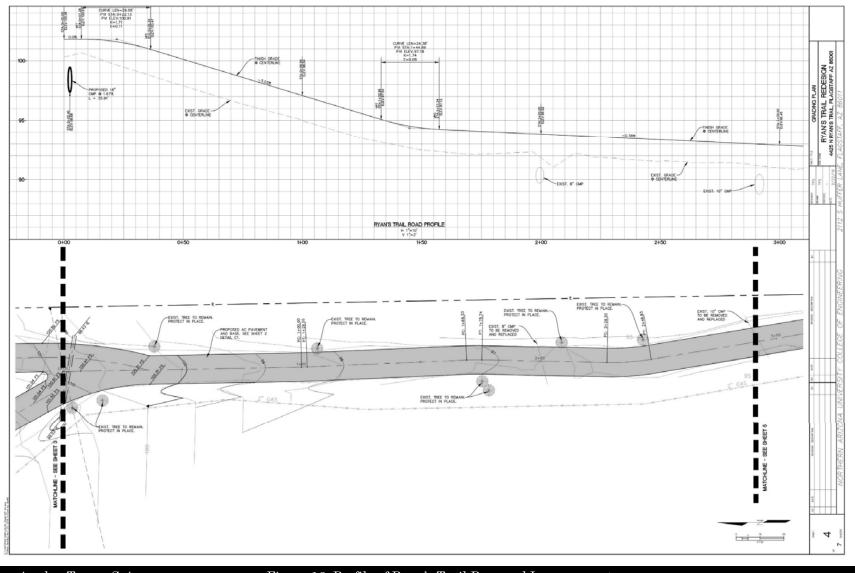
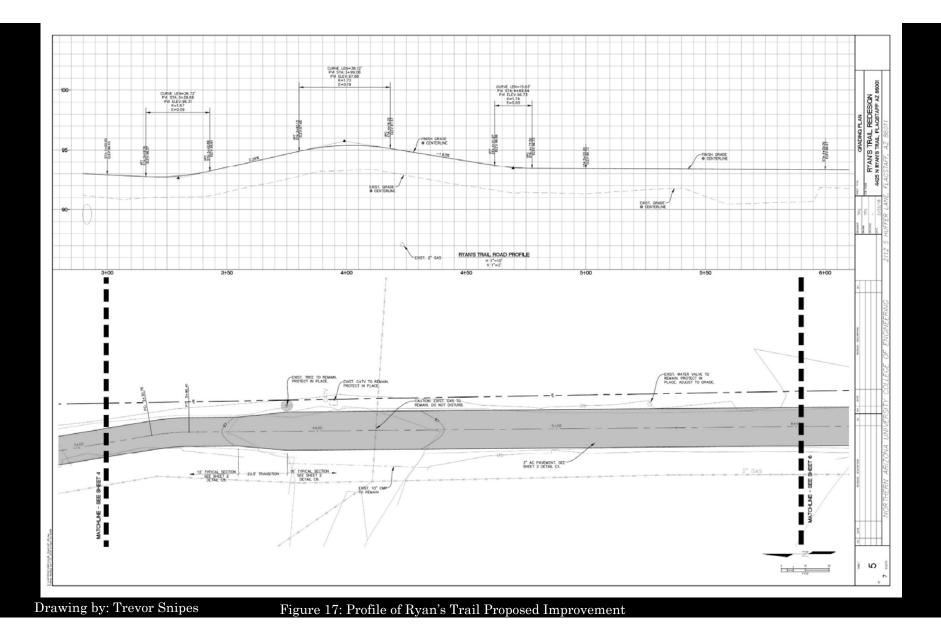
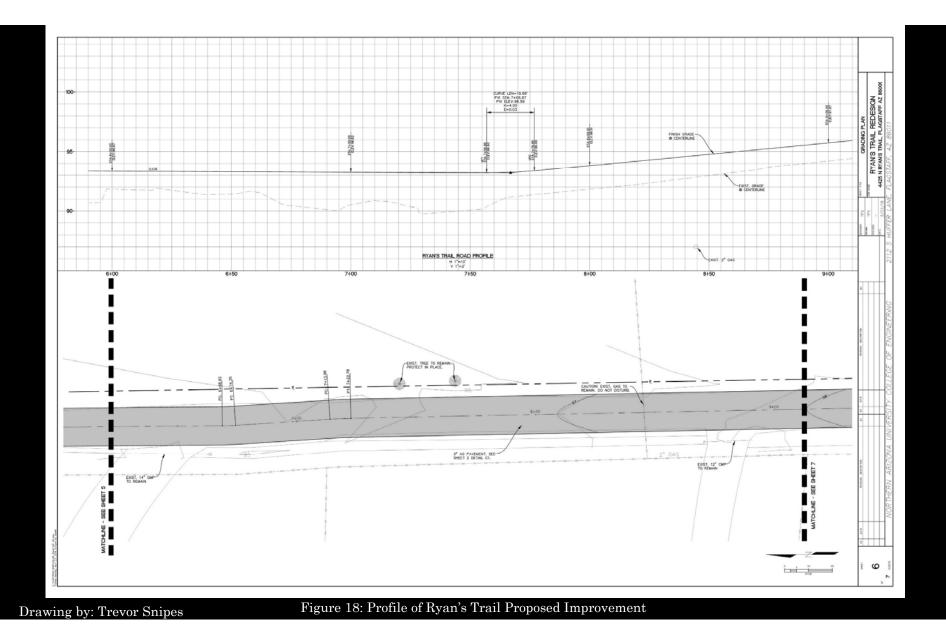
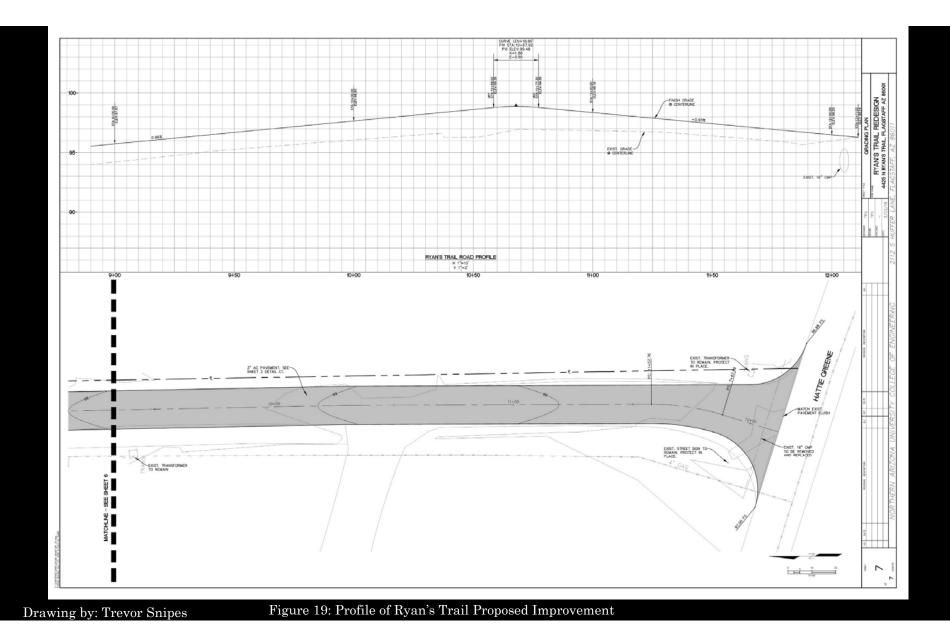


Figure 12: Ryan's Trail North-bound 12 Foot Wide Section

Design Goals


- Ease of snow removal
- Reduce damage to vehicles and homes
- Suitable for all vehicles, bicycles, and pedestrians





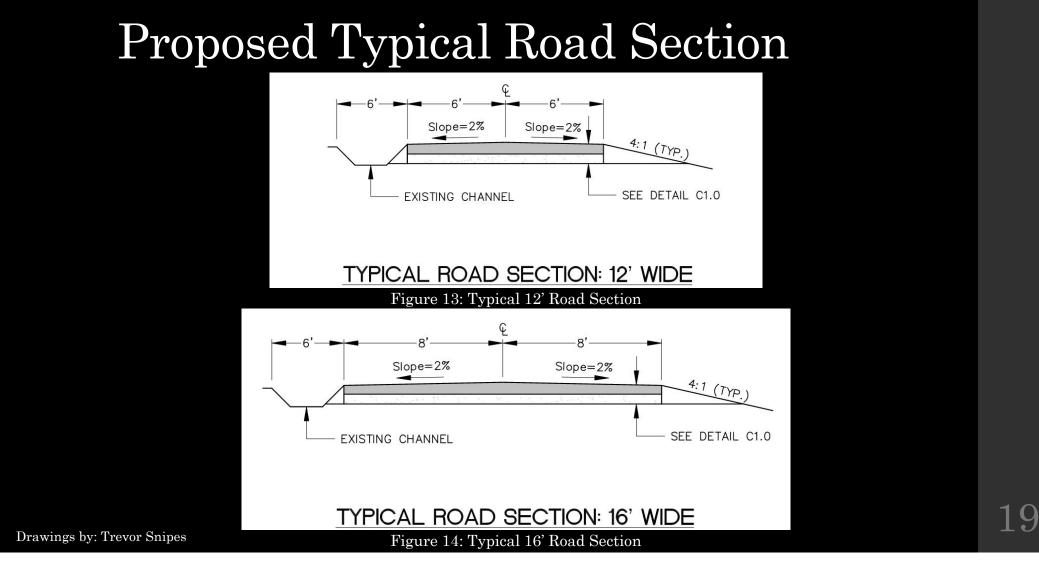

Drawing by: Trevor Snipes

Figure 16: Profile of Ryan's Trail Proposed Improvement

Quantities

Table 5: Quantities on Ryan's Trail

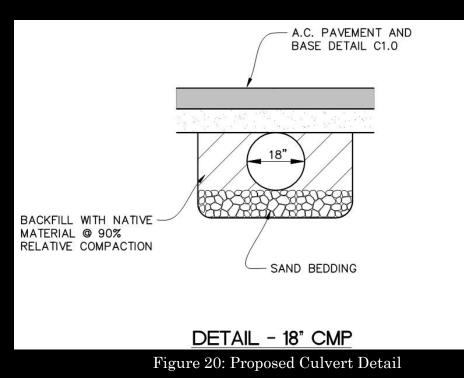
Item	Quantity
Asphaltic Concrete	190 CU YDS
Aggregate Base Course	380 CU YDS
Culvert	36 LF
Cut	50 CU YDS
Fill	550 CU YDS

Table 6: Protect in Place Values for Ryan's Trail

Object	Quantity
Trees	18 EA
Water Valve	1 EA
Utility Boxes	3 EA

Proposed Site Hydrology

Table 7: Pre and Post De	evelopment Hydrology [3]
--------------------------	--------------------------


	Rational (50 yr.)	Rational (100yr.)
Pre Development:	5.07 cfs	6.12 cfs
Post Development:	$6.05 ext{ cfs}$	7.30 cfs

- Rational Equation: Q=CiA
- Q= Flow
- C= Runoff Coefficient
- i= Rainfall Intensity
- A= Area of Interest

Hydraulic Analysis - Culverts

Table 8	50 Year St 3: 50 Year Storm (vsis	Table 9:	100 Year 100 Year Storm		sis
Culvert	Discharge (cfs)	Slope (ft/ft)	Velocity (ft/s)	Culvert	Discharge (cfs)	Slope (ft/ft)	Velocity (ft/s)
1Existing	.34	.037	2.80	1Existing	.41	.037	2.96
1Proposed	.34	.017	2.18	1Proposed	.41	.017	2.3
2	.39	.004	2.26	2	.47	.004	2.38
3	.41	.001	2.30	3	.49	.001	2.4
4	1.56	.004	3.31	4	1.86	.004	3.48
5	1.41	.003	3.21	5	1.68	.003	3.38
6	.59	.001	2.53	6	.70	.001	2.65
7	.34	.004	2.18	7	.40	.004	2.28

Proposed Culvert Detail

Drawing by: Trevor Snipes

Cost of Services and Staffing

Table 10: Cost of Engineering Services and Staffing

		e io. Cost of Eng					
	D 1 1 1			~ ~			Estimated
	Project Manager	Design Engineer	Drafter	Survey Crew	Technician	Total for	Cost of
	(60%)	(55%)	(40%)	(60%)	(50%)	Services	Services
	\$	\$	\$	\$	\$	\$	
Pay Rate (\$/hr.)	55.00	45.00	40.00	50.00	20.00	210.00	
		_					
		Tas	k Breakdo	wn			
	10		10				
1. Site Investigation	10	15	10	25	0	60	72
2. Site Map	10	0	25	15	0	50	20
3. Conceptual Design	20	45	20	0	0	85	120
4. Hydrology	15	10	5	0	30	60	68
5. Life Cycle Cost Analysis	35	35	0	0	0	70	95
6. Final Design	20	40	30	0	10	100	80
7. Project Management	40	25	15	0	5	85	100
Subtotal (hr.)	150	170	105	40	45	510	555
	\$	\$	\$	\$	\$	\$	\$
Subtotal Pay (\$)	8,250.00	7,650.00	4,200.00	2,000.00	900.00	23,000	23,765
Benefits (%	\$	\$	\$	\$	\$	\$	\$
compensation)	4,950.00	4,207.50	1,680.00	1,200.00	450.00	12,488	13,266
	\$	\$	\$	\$	\$	\$	\$
Profit Margin (\$)	523.81	428.57	380.95	476.19	190.47	2,000	2,000
	\$	\$	\$	\$	\$	\$	\$
Overhead (\$)	2,095.24	1,714.29	1,523.81	1,904.76	761.90	8,000	8,000
	\$	\$	\$	\$	\$		
Total (\$)	15,819.05	14,000.36	7,784.76	5,580.95	2,302.37	\$ 45,487	\$ 47,031

24

Scheduling

Table 11: Tasks and Their Corresponding Start and Finish Dates

Task	Start	Finish
1.0 Site Investigation	1/19/2018	1/26/2018
2.0 Site Map	1/26/2018	2/02/2018
3.0 Conceptual Design (Some Drafting)	2/02/2018	2/22/2018
4.0 Hydraulics/ Hydrology	2/22/2018	3/15/2018
5.0 Life Cycle Cost Analysis	3/15/2018	3/30/2018
6.0 Final Design (Drafting)	3/30/2018	4/25/2018
7.0 Project Management	1/19/2018	5/11/2018

Future Work

- Design Phase has been completed
- Implementation Phase is remaining
 - Provide the plans and conducted research to a professional licensed engineer
 - Hire a contractor to perform the work
- Resident may implement an alternative prior to asphalt design

Acknowledgements

Dianne McDonnell

- Resident of Lockett Ranches
- Professor at Northern Arizona University

Brendan Russo

CEFNS Professor

Specializes in Traffic Operations

Earth Pro

- Local contractor
- Served as a resource throughout duration of the project

References

[1] Global Information System Arc Map. ESRI, 2018.

[2]"Arizona 811 - Know whats below. Call or Click before you dig.", *Arizona 811*, 2018. [Online]. Available: http://www.azbluestake.com/. [Accessed: 27-Apr- 2018].

[3] Stormwater (Multi-Sector General Permit/MSGP) | City of Flagstaff Official Website. [Online]. Available: https://www.flagstaff.az.gov/3281/Industrial-Stormwater. [Accessed: 20-Mar-2018].

Questions?